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Abstract
Theoretical methods to calculate the optical response of crystals are reviewed.
The second-harmonic generation coefficients of borate nonlinear optical crys-
tals are calculated using the anionic group theory combined with the Gaus-
sian’92 ab initio calculation method. Without adjusting the parameters, the cal-
culated values are in good agreement with the experimental values. Meanwhile,
a plane-wave pseudopotential total energy package is also used to calculate and
discuss the theoretical background and accuracy of the theory. The results
indicate that the anionic group theory can predict and calculate the nonlinear
optical coefficients of borate crystals reliably, and the energy band calculations
can reveal the relationship between nonlinear optical effects and microstructure.

1. Introduction

Nonlinear optical (NLO) crystals have played an important role in laser science and technology,
and the search for new NLO crystals, particularly for the ultraviolet (UV) and infrared (IR)
spectral regions, is still very active, even though intensive efforts in this field have been in
progress for nearly forty years. Scientists working in this field realize the extreme importance,
in the search for new NLO crystals, of a thorough elucidation of the structure–property
relationship between NLO effects and microstructure.

Many attempts have already been made in this direction. Among them we may cite in
particular the bond parameter methods, exemplified by the work during the 1960s to 1970s of
Bloembergen [1], the anharmonic oscillator models of Kurtz and Robinson [2], and Garrett and
Robinson [3], the bond parameter methods of Jeggo and Boyd [4], and Bergman and Crane [5],
and the bond charge model of Levine [6]. In the above-mentioned works, Levine’s model [7]
is the most successful, and has been shown to be particularly useful in the elucidation of the

3 Present address: Department of Materials Science, 138-78, California Institute of Technology, Pasadena, CA 91125,
USA.
4 Present address: Institute of Materials Research and Engineering, National University of Singapore, Singapore
117602.

0953-8984/01/230369+16$30.00 © 2001 IOP Publishing Ltd Printed in the UK R369



R370 Z S Lin et al

structure–property relationship of the NLO effect in A-B type semiconductor crystals, in which
the basic structural unit consists of sp3-hybrid tetrahedrally coordinated atoms. However, this
method has some limitations for other types of NLO crystals in which the basic structural unit
does not belong to the category of simple bonds [8, 9].

Since the 1970s, several research groups have discovered that the second-order
susceptibility of most NLO crystals arises from basic structural units with delocalized regions of
valence electron orbitals belonging to more than two atoms, rather than from regions localized
around two atoms connected by a simple σ -type bond. Davydov et al [10] proposed that
the second-order susceptibilities of organic crystals originate from the molecules in their
basic structural unit, and hence it is most likely that conjugated organic molecules with
donor–acceptor radicals will exhibit large second-order susceptibilities. This idea was further
developed by Chemla et al [11], Oudar and Chemla [12] and Oudar and Leperson [13]. With
regard to inorganic NLO crystals, DiDomenico and Wemple [14] found that the second-order
susceptibities of perovskite and tungsten–bronze type crystals are largely due to the distortion
in the MO6 oxygen-octahedra. Therefore, the latter is considered to be the basic structural
unit for the production of second-order susceptibility in these crystals. However, because they
only use a parametric method, based on the polarization potential tensor βij , it is impossible to
ascertain the relationship between the electronic structure of the MO6 oxygen-octahedra and
the macroscopic second-order susceptibilities.

At the end of the 1960s, Chen initiated an extensive study to develop a general quantum-
chemical NLO-active group theory of the structure–property relationship of NLO effects in
some typical known inorganic NLO crystals. This work has led to the establishment of the
so-called ‘anionic group theory’ [15] and an approximate method of calculation based on
the second-order perturbation theory for the second-order susceptibilities of NLO crystals [16,
17]. On the basis of this theoretical model, Chen’s group succeeded in a systematic elucidation
of the structure–property relationship of the NLO effect for almost all the principal types of
inorganic NLO crystals, namely the perovskite, tungsten–bronze, iodate, phosphate and nitrite
crystals [17].

In the last two decades several first-principles calculations of the optical responses of
NLO crystals have been performed. In the early years attention focused on the development
of the calculation methods and the responses of certain semiconductor crystals. Later, with
the consummation of the calculation method the band structures and optical responses were
obtained for such complex crystals as β-BaB2O4 (BBO), LiB3O5 (LBO) and CsB3O5 (CBO).

In this review we concentrate on three theories and calculation methods for the optical
response, and in particular focus on the calculations of the NLO coefficients of borate crystals:
(1) the bond charge model, (2) the anionic group theory and (3) the first-principles calculation.
The paper is organized in the following way. In section 2 we introduce the above three
calculation methods and their applications. In section 3 the relation of the structure–optical
properties of BBO crystal is discussed. In section 4 the results for the LBO family are given
and discussed. In section 5 the calculations of various other borate crystals are given. In
section 6 similar calculations and discussions are given for the ReCa4O(BO3)3 family. Finally,
some conclusions are made in section 7.

2. Three methods to calculate the optical response

2.1. The bond charge model

The bond charge and bond polarization model investigates the nonlinear susceptibility of ma-
terials from the view of the chemical bond and its polarizability [6–9]. The basic assumptions
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of this model are: (1) the polarizabilities of individual bonds can be summed, and the material
macrosusceptibility is equal to the sum of the microsusceptibilties of individual bonds in the
crystal structure; (2) on the basis of the distribution of bond charges the susceptibility of an
individual bond can be calculated with the parameter method. In the early years this model
was established for calculating the linear susceptibility of materials. Later Robinson suggested
that it could also be applied to nonlinear optical coefficients [18]. The NLO coefficients d can
be written as

dmnp =
∑
b

Gbmnp(qrs)β
b
qrs (1)

where b labels the bond, q, r and s are direction cosines, β is the NLO susceptibility of the
bond, and the Gbmnp(qrs) are the geometrical factors connecting the bond direction with the
crystalline axes. Levine suggested calculating the microsusceptibility of the chemical bond
with an oscillator model of the bond charge [7]. This model is the most successful and is partic-
ularly useful in the elucidation of the structure–property relationship of the NLO effect in A-B
type semiconductor crystals. However, this model has some limitations for other types of NLO
crystals in which the basic structural unit does not belong to the category of simple bonds [8, 9].

2.2. Anionic group theory

On the basis of an investigation of almost all principal types of NLO crystals known, such
as perovskite, tungsten–bronze type, iodate, phosphate, molybdate and nitrite crystals, Chen
discovered that in any crystal with large NLO effects, the basic structural unit is without
exception built up from the anionic groups (or molecules for organic NLO crystals), which
are capable of producing large microscopic second-order susceptibilities, such as the (MO6)n−

coordination octahedron in perovskite and tungsten–bronze type crystals, the (IO3)− group
in iodates, the (PO4)3− and (MoO4)2− group in, respectively, phosphates and molybdates,
the (NO2)− group in nitrites, and so on. On this basis, Chen proposed a theoretical model
called the ‘anionic group theory’ for the NLO susceptibility of NLO crystals in 1976 [15].
This theory rests on the following two assumptions: (1) the overall SHG coefficient of the
crystal is the geometrical superposition of the microscopic second-order susceptibility of the
anionic groups, and has negligible contribution from the essentially spherical cations; (2) the
microscopic second-order susceptibility of the basic anionic group can be calculated from the
localized molecular orbitals of this group using quantum chemistry calculation methods. It
can easily be shown that the two assumptions can be expressed by

χ
(2)
ijk = F

V

∑
p

Np ·
∑
i ′j ′k′

αii ′αjj ′αkk′χ(2)i ′j ′k′(P ) (2)

where F = (n2 +2)/3 (refractive index n = nx , ny and nz) is the local field factor [19], V is the
volume of a unit cell,NP is the number of pth groups in this unit cell, and αii ′ , αjj ′ and αkk′ are
the direction cosines between the macroscopic coordinates of the crystal and the microscopic
coordinates of the pth group. The χ(2)i ′j ′k′(P ) is the microscopic second-order susceptibility of
the pth group, which can be calculated with our subprogram based on the molecular orbital
calculation results of the group. On the basis of second order perturbation theory, the formula
for the microscopic SHG coefficients is

χ2ω
ijk = −e3

4h2
· a3
H ·N · S2ω

ijk ·
∑
n,n′

′{
[〈g|ri |n〉〈n|rj |n′〉〈n′|rk|g〉

+ 〈g|ri |n〉〈n|rk|n′〉〈n′|rj |g〉] · L(ijk)(ωgn;ωgn′)

+ 〈g|rj |n′〉〈n′|ri |n′〉〈n|rk|g〉L(00)(ωgn;ωgn′)
}

(3)
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where 〈g|ri |n〉 = 〈
$g

∣∣ ∑ ri(p)$n〉 is the matrix of the electron dipole moment between the

ground and excited states, aH is the Bohr radius, S(2ω)ijk is the conversion coefficient of the
effective field given by [19]

S
(2ω)
ijk =

(n2
e(2ω) + 2

3

)(n2
o(ω) + 2

3

)(n2
o(ω) + 2

3

)
(4)

and L(ijk) and L(00) are energy factors expressed by

L(ijk)(ωgn;ωgn′) = 1

(ωgn − 2ω)(ωgn′ − ω) +
1

(ωgn − 2ω)(ωgn′ − ω),

L(00)(ωgn;ωgn′) = 1

(ωgn − ω)(ωgn′ + ω)
+

1

(ωgn′ − ω)(ωgn′ + ω)
.

(5)

For i = j = k the energy factor is

L(iii)(ωgn;ωgn′) = L(ijk)(ωgn;ωgn′) + L(ijk)(ωgn′ ;ωgn) + L(00)(ωgn;ωgn′) (6)

where ωng = (En − Eg)/h̄ and En, Eg are the energies of the excited and ground states,
respectively. Equation (1) is a widely accepted formula used for transforming the microscopic
susceptibility of the pth group to a macroscopic coefficient. According to equations (2) to
(6), we have written a subprogram for computation of the microscopic susceptibility using the
results of the Gaussian’92 calculation.

During the 1980s, Chen’s group turned its attention to the borate series and recognized
that borate compounds have numerous structural types, since boron atoms have either three-
or four-fold coordination. This complex structural nature of the borate compounds leads to a
great variation in the selection of structures favourable for NLO effects, and the anionic group
theory can be used to systematically elucidate which structural unit is most likely to exhibit
large nonlinearities [20]. This theoretical analysis combined with systematic experimental
studies led Chen’s group to discover BBO (low temperature phase barium metaborate, β-
BaB2O4), which has now become one of the most outstanding NLO crystals [21]. Meanwhile,
scientists in Germany also discovered that powder BBO has a relatively large SHG effect [22].

After discovering BBO, Li and Chen correctly calculated the SHG coefficients of BBO
using the anionic group theory combined with the complete neglect of differential overlap
(CNDO) approximation [23]. The results revealed that the SHG coefficients of BBO are
determined by the (B3O6)3− group, and the contribution of cation Ba2+ to the macroscopic SHG
coefficients is negligible. On the basis of this method, Chen’s group further calculated the SHG
coefficients of various borate crystals from the mid-1980s to the beginning of the 1990s, and
discovered a series of new borate and berritoborate NLO crystals, such as LiB3O5 (LBO) [24],
CsB3O5 (CBO) [25], KBe2BO3F2 (KBBF) [26, 27], Sr2Be2B2O7 (SBBO) [28], Ba2Be2B2O7

(TBO) [29], BaAl2B2O7 (BABO) [30] and K2Al2B2O7 (KABO) [31]. Meanwhile, several
other groups also discovered other borate series NLO crystals, typical representatives being
CsLiB6O10 (CLBO) [32, 33], ReCa4O(BO3)3 (Re=Y, Gd) [34–36], BaCaBO3F [37] and
LiB4O7 [38]. The SHG coefficients of these newly discovered borate NLO crystals have also
been correctly calculated with the anionic group theory. We will discuss these calculations in
sections 5 and 6. Recently, Backer [39] has given a review on borate NLO materials which
discusses the further developments of recent years.

However, due to limited computation methods and facilities, in the 1980s Chen’s group
only used the CNDO-type approximation to calculate the molecular orbitals of anionic groups,
so there may be some doubts about their calculated results. To investigate the reliability of the
anionic group theory in determining the SHG coefficients of borate NLO crystals we used a
more precise method to calculate the SHG coefficients by means of the anionic group formulae
again, namely, an ab initio method with the Gaussian’92 package [40].
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On the other hand, the contribution of cations to the overall SHG coefficients is totally
neglected in the anionic group theory. However, it is obvious that there are, to a certain degree,
interactions between the anionic groups and cations in the lattice. Recently, some authors have
even supposed that the cations may account for a major contribution to the SHG coefficients
of borate NLO crystals [41]. In order to answer these questions, we need to use the first-
principles energy band calculation method to analyse the action of cations on the effect of
SHG coefficients, at least for the borate series NLO crystals.

2.3. First-principles calculations

The first-principles calculation, due to its predictive power and systematic way, has become
a more favourable approach to study the NLO properties of materials, especially the SHG
properties. Early in 1963, Butcher and McLean [42] presented the formalism to calculate SHG
coefficients based on band structure. However, due to the difficulty in dealing with the explicit
divergence in the static limit of their formula, the calculation was not practical until recently
when some groups [43–47] greatly improved the evaluation methods. After Aspnes [43] gave
a formalism free of divergence in cubic crystals, Ghahramani et al [44] took another important
step to present a general approach to avoid the divergence by a new sum rule and calculated
χ(2) of (Si)n/(Ge)n. Afterwards, Sipe and Ghahramani [45] improved the methodology by
systematic separation of interband and intraband motion. Aversa and Sipe [46] used the length
gauge instead of velocity gauge in their formulation to give expressions free from the unphysical
divergence. Rashkeev et al [47] later rearranged this formalism to make the symmetries more
apparent, and calculated χ(2) for the zinc-blende GaAs, GaP and wurtzite GaN, AlN. Very
recently, Duan et al [48–50] presented an evaluation technique to reduce the number of k
points needed for convergence of the formula given by Ghahramani et al. They calculated
the first and second optical responses of BBO, LBO and CBO crystals and pointed out the
dominant source of the optical nonlinearities of these crystals. In 1999, we briefly reviewed
the above-mentioned progress [51], and gave an improved formula based on [47]. We slightly
rearranged the terms to eliminate those denominators that may cause divergence, and made
use of Duan’s method to improve efficiency in reducing the number of k points necessary for
convergence. At the same time, we suggested a real-space atom-cutting method to analyse the
respective contributions of various transitions among ions and ion groups to optical response.
The calculated energy gaps of some NLO borate crystals on the first-principles level are listed
in table 1 in which we also give a note about the calculated optical properties.

We used CASTEP [55], a plane-wave psuedopotential total energy package, to develop
a new way to calculate the SHG coefficients using band wave functions. The static limit of
the SHG coefficients plays the most important role in the application of SHG crystals, so we

Table 1. Energy gaps of LBO, CBO, CLBO and BBO crystals from energy band calculations (eV).

Exp. OLCAO[54] LCAO[53] LAPW[48−50] CASTEP[51, 52]

LBO 7.78 7.37 6.9 6.95 4.825
CBO 7.28 5.86 4.463
CLBO 6.87 4.321
BBO 6.55 5.60 4.9 4.88 4.80

Notea ε(0) Optical conductivity χ(2), n nx, ny, nz, χ(2)

a Note shows the calculated optical properties: ε is the dielectric constant, n the refractive index
and χ(2) the SHG coefficients.
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adopted the formula originally proposed by Rashkeev et al [47] and further improved by us [51]

χαβγ = χαβγ (VE) + χαβγ (VH) + χαβγ (two bands) (7)

where χαβγ (VE) and χαβγ (VH) denote the contributions from virtual-electron processes
and virtual-hole processes, respectively, where χαβγ (two bands) devote the contribution
to χ(2) from two band processes. The formule for calculating χαβγ (VE), χαβγ (VH) and
χαβγ (two bands) are given in reference [51].

To analyse the contribution of an ion (or cluster) to the nth order susceptibility χ(n), we
present a model called the real-space atom-cutting method. In the calculation we divide the
real space into individual zones, each of which contains an ion. For simplicity, we define the
zones to be spheres centred on a specific ion. When we set the band wave function to zero in
the zones that belong to a specific ion (which we refer to as ‘cutting’), the contribution of the
ion is assumed to be cut away. Therefore, the contribution of an ion is extracted when we cut
other ions from the total wave functions. For example, if the contribution of ion A to the nth
order susceptibility is denoted as χ(n)(A), we can obtain it by cutting all ions except A from
the original wave functions, i.e.,

χ
(n)
A = χ

(n)

All ions except A are cut (8)

where the expression for χ(n)A and computation details are given in [51]. The definition of
the boundary of two nearest ions is given by the points at which the charge density in real
space reaches a local minimum. By this strategy, the cutting radius of two nearest ions can be
determined.

3. Structural origin of the NLO effect for BBO crystal

The structural unit of BBO crystal is composed of two parts: the (B3O6)3− group and the
Ba2+ cation. The point group of BBO is C3v [56] and, therefore, according to the IEEE/ANSI
standard for the definition of the SHG coefficients of an NLO crystal [57], BBO has mainly
three independent non-vanishing SHG coefficients: d22, d31 and d33 (d15 ≈ d31 from Kleinman
symmetry [58]). According to the anionic group theory, (B3O6)3− group is the basic structural
unit which produces NLO effects in BBO. In other words, the macroscopic SHG coefficient
of BBO is the geometrical superposition of the microscopic second-order susceptibility tensor
of the (B3O6)3− group; the cations have been neglected in the first-order approximation. On
the basis of this theory, Li and Chen calculated the SHG coefficients of BBO crystal using
the CNDO/S quantum chemistry approximate method, and obtained satisfactory results [23].
However, the CNDO/S method partly relies on the parameters. Thus, we re-calculated the SHG
coefficients of BBO crystal based on a first-principles method that consists of two steps: first
we use the Gaussian’92 ab initio method to calculate the localized orbitals of the (B3O6)3−

group, then we determine the microscopic SHG coefficients with the self-consistent field
orbitals obtained. Furthermore, the macroscopic SHG coefficients of the crystal are calculated
by expression (1). Table 2 lists the results obtained by the two different methods. These
calculations clearly support the conclusion that the SHG coefficients of BBO crystal indeed
come mainly from the contribution of (B3O6)3− groups. However, the contribution of coplanar
(B3O6)3− groups to the d31 and d33 vanishes when the crystal lattice fields produced by Ba2+

cations and the other (B3O6)3− groups are not considered. This means that d31 is the same
as d33 and equal to zero, if the effects of the odd-order lattice fields V s, which are produced
by (B3O6)3− groups and cations, are not included in the calculation. If an odd-order lattice
field V s is added to the Hamiltonian of the (B3O6)3− groups, the theoretical values of the d31

and d33 for BBO crystal would appear. Obviously, the odd-order lattice field V s is produced
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by the non-symmetrical distribution of Ba2+ cations and the other (B3O6)3− groups along the
z-axis. However, the size of the d31 and d33 coefficients is only 6% ∼ 7% of that of the d22

coefficients in BBO crystal. This means that the contribution of the Ba2+ cation to the SHG
coefficients can be completely neglected under the first-order approximation.

To investigate the limitation and degree of approximation of the above-mentioned
calculation results based on the anionic group theory, we have performed energy band
calculations with the CASTEP package [55] and ‘cutting’ analysis for BBO crystal [51].
Table 3 lists the contributions of the (B3O6)3− group and Ba2+ to the refractive indices of
BBO. Obviously, the contributions from the cation Ba2+ are about 10%, but only 1% in the
case of the birefringence. Table 4 lists the contributions of the (B3O6)3− group and Ba2+

to the SHG coefficients. The contribution of cations is only 15%–20%. The error is at the
same level in calculations of SHG coefficients based on the anionic group theory, thus we are
convinced that the anionic group theory is suitable for dealing with the relationship between
the microscopic structure and the SHG coefficients of various borate crystals.

Obviously, the anionic group theory method is based on an approximate localized orbital
model since it considers neither the contribution of cations nor that of the interaction between
groups to the SHG coefficients. However, we believe that the theory is accurate enough for
analysing the SHG effects of the borate NLO crystals and has a firm theoretical basis. The
reasons are: (1) the results of energy band calculations of BBO, LBO, CBO and CLBO by our
group using the CASTEP method [51, 52] indicate that the charge density of cations and the

Table 2. SHG coefficients of BBO (pm/V; λ = 1.064 µm).

dij Experiment Calculated

CNDO Gaussian’92

d22 ±1.60(1 ± 0.05)a 2.2(CNDO/S) 2.03c

±2.20(1 ± 0.05)b 1.2(CNDO/2) 1.73d

d31 � −(0.07 ± 0.03)da
22 −0.03

d33 ≈ 0∗ −0.0039

aReference [21].
bReference [63].
cAverage boron–oxygen bond length in the (B3O6)3− group used.
dReal boron–oxygen bond length in the (B3O6)3− group used.

Table 3. Contribution of Ba2+ and (B3O6)3− group to the linear refractive indices of BBO by
CASTEP

Total Ba2+ cut out (r = 1.35 Å) Contribution of Ba2+

no 1.6851 1.5280 9.3%
ne 1.5695 1.4114 10%
.n = |no − ne| 0.1156 0.1166 0.86%

Table 4. Contribution of Ba2+ and (B3O6)3− group to SHG coefficients of BBO by CASTEP
(pm/V).

Ba2+ cut out (B3O6)3−

Total (r = 1.20 Å) (r(B) = 0.8 Å, r(O) = 1.2 Å)

d22 −2.76 −1.50 −0.36
d31 −0.107 −0.059 −0.039
d33 −0.0077 0.045 −0.030
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B–O groups can be separated, while the B3O6 group in BBO and the B3O7 group in the LBO
family should be treated as a whole. (2) The dipole transition from the cation to B–O group
is the off-site transition. Its value is about one order smaller than the dipole transition of the
intra-atomic transitions within B–O groups or cations [51]. The result is shown in figure 1,
where VB represents valence band and CB represents the conduction band. This conclusion
allows us to calculate the optical coefficients, such as linear and second-order susceptibility,
of cations or anionic groups separately. (3) The Madelung potential should be considered
in the crystal lattices; it arises from electrovalent cations and anionic groups and shifts the
bands of cations upward and the bands of anionic groups downward. However, it is difficult
to theoretically predict this potential for different lattices. Thus, if the cations were included
in the localized model, an arbitrary parameter of the Madelung potential has to be introduced
during the localized molecular orbital calculation. Obviously, this is not what we want. On the
other hand, addition of the cations to the anionic group, which forms a cluster, will produce a
problem known as the electric charge balance. Thus, we believe that it is reasonable to choose
the anionic group as the basic structure unit to study the relationship between the microscopic
structure and the SHG effects of borate NLO crystals.

Figure 1. Imaginary part of the dielectric function

4. Calculation of SHG coefficients for the LBO family

On the basis of the anionic group theory, Chen’s group and co-workers systematically studied
the relationship between the microscopic NLO coefficients and the structure of various boron–
oxygen groups using a CNDO-type approximation from the end of the 1970s to the beginning
of the 1980s [23]. To confirm the reliability of the results, we calculate the microscopic
susceptibilities of various boron–oxygen groups by means of the Gaussian’92 ab initio method
again. Some results are listed in table 5. These calculations support two obvious conclusions as
follows. (1) The coplanar (BO3)3− or (B3O6)3− group which has conjugated π orbitals should
have relatively large microscopic SHG coefficients, but its z component is small. (2) The
(B3O7)5− group should be formed if one boron of the (B3O6)3− group is changed from trigonal
to tetrahedral coordination. The (B3O7)5− group gives rise to a relatively large z component of
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Table 5. Calculated values of the microscopic susceptibility of some typical boron–oxygen groups
(10−31 esu; λ = 1.064 µm).

Group Microscopic susceptibility CNDO Gaussian’92

(BO3)3− χ
(2)
111 0.64 0.4715

χ
(2)
122 −0.64 −0.4715

(B3O6)3− χ
(2)
111 1.591 1.5597

χ
(2)
122 −1.591 −1.5520

(B3O7)5− χ
(2)
111 −2.9308 −1.8593

χ
(2)
122 0.8212 0.7618

χ
(2)
133 −0.6288 −0.4142

(BO4)5− χ
(2)
123 −0.1578 −0.1404

χ
(2)
113 0.0335 0.0055

χ
(2)
223 −0.0329 −0.0139

Table 6. SHG coefficients of LBO family (pm V−1; λ = 1.064 µm).

Experimenta Calculated

Crystal dij C T Chen et alb Velsko et alc CNDO/2 Gaussian’92

LBO d31 ±0.97 ±0.71 ± 0.05 −0.94 −0.94
d32 ±1.05 ±0.83 ± 0.06 1.04 1.00
d33 ±0.053 0 ± 0.1 0.21 0.20

CBO d14 ±0.75 ±1.04e −0.65 −0.68
CLBO d36 ±0.95d −0.58 −0.57

ad36(KDP) = 0.39 pm V−1 adopted as criterion.
bReference [24]
cReference [64].
dReference [32].
eReference [25].

the SHG coefficients while the x and y components are nearly unchanged. From the quantum
chemistry calculation it is known that this structure is beneficial for a wider transparent range
on the UV side [59]. Therefore, it is advantageous to choose (B3O7)5− groups instead of the
(B3O6)3− as the basic structure in the search for new borate NLO crystals for UV and DUV
applications. Based on this model, LBO crystal was discovered in 1988 [24], and Wu’s group
and Keszler’s group respectively discovered NLO effects in CBO [25] and CLBO [32], in
which the basic structural unit is also the (B3O7)5− group.

Although the SHG coefficients of LBO, CBO and CLBO have already been calculated
by the CNDO approximation, we use the Gaussian’92 ab initio method to determine them
once more. The calculated and experimental values are listed in table 6. The results of both
methods show no difference from the measured values, which implies the reliability of both
methods. However, the d36 coefficient of CLBO calculated by either method is somewhat
smaller than the value measured by Sasaki’s group [32]. To investigate the inconsistency of
the theoretical value with the measured value, we determine the SHG coefficients of the three
crystals by means of the CASTEP package, and find that the theoretical d36 value of CLBO is
even smaller. The results are also listed in table 7. Therefore, we suggest that the measured
value of Sasaki’s group is not sufficiently accurate. We will measure the d36 coefficient of
CLBO in a later study. Moreover, we have calculated the contribution of cation and anion
groups to the SHG coefficients of these three crystals on the basis of the CASTEP package and
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Table 7. Contributions of Li+, Cs+ and (B3O7)5− group to SHG coefficients of LBO family by
CASTEP (pm V−1).

Crystal Contributions

LBO d31 d32 d33

Li+ −0.008 0.002 −0.001
(B3O7)5− −0.496 0.571 −0.006
Sum −0.504 0.573 −0.007
Originala −0.505 0.582 0.014
Experimentb ∓0.67 ±0.85 ±0.04

CBO d14

Cs+ −0.098
(B3O7)5− −0.342
Sum −0.440
Original −0.577
Experiment ±1.04c, ±0.75d

CLBO d36

Li+ −0.006
Cs+ −0.138
(B3O7)5− −0.222
Sum −0.366
Original −0.546
Experimente ±0.95

a Original means the SHG coefficients without cutting.
b Reference [65].
c Reference [26].
d Reference [66].
e Reference [32].

real-space atom-cutting methods [51]. The computational details are given in references [51]
and [52], and table 7 shows the results. One can easily see from the table that the contribution
of the Li+ cation to the SHG coefficients of LBO is nothing, while that of the Cs+ cation to
the coefficients of CBO and CLBO is about 15%. Therefore, we are convinced that the SHG
coefficients of the LBO family can be determined based on the anionic group theory.

5. Calculation of SHG coefficients of various other borate crystals

The KBBF crystal has relatively large SHG coefficients (d14 = 0.76 pm V−1) and a wide
transparency range (155–3660 nm) [26, 27]. Unfortunately, the crystals are very difficult to
grow and easily decompose due to the strong layering tendency in their structures. Thus it
is necessary to find other new ultraviolet (UV) NLO crystals which can achieve SHG phase-
matching below 200 nm. In order to attain this target we used a molecular engineering approach
to search for new UV NLO crystals in borate-based compounds. As a result, SBBO, BABO and
KABO were discovered during the 1990s. Recently, electronic structure calculations of KBBF,
BABO, KABO and BPO4(BPO) nonlinear optical crystals from first-principles were carried
out based on a plane-wave pseudopotential method with the CASTEP package [55]. On the
basis of the band structure and wave functions the linear and nonlinear optical coefficients were
obtained for the four NLO crystals. A real-space atom-cutting method was also adopted to
give the respective contributions of cations and anionic groups to the optical response. Table 8
gives the calculated and experimental SHG coefficients of the four crystals.

The calculated refractive indices, birefringence (table 9) and SHG coefficients are in good
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Table 8. SHG coefficients of miscellaneous borate crystals by CASTEP (pm V−1; λ = 1.064µm).

Crystal dij Experiment Calculated

KBBF d11 0.76 −0.35
BABO d11 0.75 0.745
KABO d11 0.48 −0.317
BPO d15 0.585a −0.358

a Reference [66]

Table 9. Refractive indices and birefringence of KBBF, BABO, KABO and BPO crystals, as
calculated by CASTEP and experimental values.

Crystal Wavelength Calculated Experiment

(µm) no ne .n no ne .n

KBBF 1.064 1.4759 1.4150 0.061 1.477 1.400 0.077
BABO 1.064 1.5757 1.5257 0.050 1.570 1.517 0.053
KABO 1.064 1.5590 1.5071 0.052 1.560 1.492 0.068
BPO 1.064 1.6046 1.600 0.0046 1.600 1.595 0.005

agreement with experimental values for these crystals. The results of the atom-cutting method
reveal that the contributions from K+ and Ba2+ to the refractive indices are comparable with
those from the anion groups BO3

3− and AO4
5−, but their contributions to the anisotropy of the

refractive index can be neglected. The contributions to the SHG coefficients from the (BO3)3−

and AlO4
5− go beyond 95% for KABO, but as the radius of the cation M+ increases their

contributions to the SHG coefficients become slightly more important. As a result, for BABO
crystal the contribution to the SHG coefficients from Ba2+ goes beyond 12%. This conclusion
is the same as that for BBO and the LBO family.

6. Determination of the SHG coefficients of GdCOB and YCOB

GdCOB and YCOB are newly developed NLO crystals [34–36] which have aroused wide
interest because they can be pulled directly from melts which are nearly congruent. Thus, it is
relatively easy to grow large and high quality crystals. However, the symmetry of both crystals
is very low, belonging to Cm [61]. According to the IEEE/ANSI standard definition for NLO
coefficient [57], the dij of YCOB crystal can be written in the following form:

dij =


d11 d12 d13 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 d35 0


 (m⊥Y ). (9)

By Kleinman symmetry [58], d31 = d15, d32 = d24, d13 = d35 and d26 = d12, so a total of six
independent dij coefficients, d11, d12, d13, d31, d32 and d33 should be measured. However, it is
very difficult to measure them with the Maker fringes and the phase-matching methods, since
the d32 and d12 are mixed, and no previous experimental data exist. To overcome this difficulty,
we first calculate all six dij coefficients of YCOB and GdCOB, then prove the reliability of
the theoretical values using the Maker fringes method.

On the basis of the anionic group theory, the macroscopic SHG coefficients of GdCOB
and YCOB are determined by the microscopic SHG coefficients of the (BO3)3− group with
equation (1), and the microscopic SHG coefficients are calculated by the Gaussian’92 ab initio
method. The results are shown in table 10. The Maker fringes method was then used to
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Table 10. SHG coefficients of GdCOB and YCOB (pm V−1).

Crystal dij Experiment Gaussian’92a

(Maker fringes)

GdCOBb d33 ±0.5761 −0.903
d11 ≈ 0.0 0.050
d12 ≈ 0.0 0.128
d13 � d33 −0.183
d31 ≈ 0.0 0.127
d32 ±0.6846 0.741

YCOBrmb d33 ±0.93 −1.018
d11 ≈ 0.0 −0.104
d12 ≈ 0.0 −0.015
d13 � d33 −0.253
d31 � d33 0.120
d32 ±1.36 0.757

a According to optical axes in [34].
b Ca4GdO(BO3)3; Ca4YO(BO3)3.

Table 11. Relationship between the effective SHG coefficients and phase-matching angles (θ , φ)
of YCBO (deff (KTP, θ = 90◦, ϕ = 23.6◦) = 2.45 pm V−1aa; = 3.2 pm V−1b).

Sampler Phase-matching angle Crystal length deff (pm V−1)
number (θ, ϕ) (mm) Experiment (a) Experiment (b) Calculatede

1 32◦, 0◦ 2 0.528 0.689 0.55
2 33◦, 9◦ 2 0.518 0.699 0.515
3 64.50◦, 35.50◦ 2 0.707 0.923 0.72
4 66.8◦, 35.4◦ 2 0.66 0.861 65.9◦, 36.5◦

5 113.20◦, 35.40◦ c 2 0.707 0.923 0.91
6 115.5◦, 35.5◦ d 2 0.754 0.985 113.7◦, 36.5◦

a Reference [67].
b Reference [63].
c Equivalent to 66.8◦, 144.6◦.
d Equivalent to 64.5◦, 144.5◦.
e d32, d33 used in calculation were obtained from Maker fringes.

determine two of the six dij coefficients which are not mixed with the other dij coefficients and
so can be measured independently. The two coefficients are d33 and d11, and their values are
also listed in table 10. On the other hand, according to the theoretical evaluation, d12 is much
smaller than d32. If the Maker fringes of d32 can be exactly measured, then d12 is certainly
very small because the Maker fringes of d32 and d12 are always mixed with each other. Figures
2(a) and 2(b) give the recorded Maker fringes curves of d33 and d32 for YCOB, respectively.
Although the Maker fringes of d32 are mixed with those of d12, we can obtain standard Maker
fringes for d32, which means that d12 is very small. Moreover, from the amplitudes of the
Maker fringes and the coherence lengths of d13 and d31 compared with those of d33, we can
deduce that d13 and d31 are much smaller than d33. The results prove the fact that the theoretical
values are in good agreement with the experimental values, except that the calculated ratio of
d32 and d33 is slightly different from its experimental value. Therefore, the theoretical SHG
coefficients of YCOB are reliable.

Figure 3(a) presents a three-dimensional space relationship between the effective SHG
coefficient deff and the phase-matching angle (θ ,5) of YCOB crystal for type I phase matching
with the fundamental wave at 1064 nm in the range of 0◦ < θ < 90◦ and 0◦ < 5 < 180◦. The
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Figure 2. (a) Maker fringes of d33 of YCOB; (b) the Maker fringes of d22 of YCOB.

experimental values of d33 and d32 and the theoretical values of d11, d12, d13 and d31 are adopted
in the calculation. Furthermore, figure 3(b) shows the curves calculated with the all-theoretical
values of the dij coefficients, also in the range of 0◦ < θ < 90◦ and 0◦ < 5 < 180◦. From
figure 3 we see that the agreement between these two curves is quite good. These two curves
reveal the important fact that the maximum deff is found not in the x–z principal plane [11]
but at the positions θ = 65.9◦, φ = 36.5◦ and θ = 113.7◦, φ = 36.5◦.

Recently, Jiang and Shao’s group in Shangdong University performed some experiments to
prove our conclusion [62]. Their measurements explicitly show that the largest SHG coefficient
is indeed not found in the principal plane, but at the positions θ = 65.9◦, φ = 36.5◦ and
θ = 66.3◦, φ = 143.5◦, which is in very good agreement with our calculated results (see
table 11). The successful determination of the SHG coefficients of GdCOB and YCOB prove
that the anionic group theory is reliable for predicting and calculating the SHG coefficients of
borate crystals.
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Figure 3. Three-dimensional space relationship between deff coefficient and the phase-matching
angle. (a) Curves calculated with the experimental values of d33 and d32 and theoretical values of
d11, d12, d13 and d31; (b) curves calculated with all-theoretical values of the dij coefficients.

7. Conclusion

On the basis of the anionic group theory of NLO crystals, we have systematically calculated
the SHG coefficients of borate crystals by using the Gaussian’92 ab initio method. Our results
indicate that this method can predict and calculate the SHG coefficients of borate crystals with
an accuracy of 80%–85%. The calculations based on energy band theory for the nonlinear
optical coefficients of certain other borate crystals clearly reveal the relationship between the
NLO effects and the microstructures.
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